Unknown-Unknown Analysis: Strategies for Identifying Compounds Not in Libraries Using Single Quadrupole GC/MS

Don Kuehl¹, Stacey Simonoff¹, Yongdong Wang¹

¹Cerno Bioscience Las Vegas, NV USA

Unknown-Unknowns

- Unknown-Unknowns are compounds in a GC/MS run that are not in the GC/MS library
 - Compound ID is important, but classic approaches to identification are tedious
 - Run high resolution MS to obtain possible molecular formula
 - May need to run 'soft" ionization
 - Run MS/MS to help deduce the structure
 - Isolate the compound in quantity for analysis by other techniques (NMR, IR...)
 - Purchase/synthesize probable compound and run GC/MS and match retention time and MS

Is There a Faster, More Economical Approach?

- What methods are available from a single quad GC/MS run for performing U-U ID?
 - Obtain the molecular formula by leveraging calibrated MS data to obtain accurate mass/spectral accuracy
 - Perform NIST "Hybrid Search" which can search compounds not in the library, but are related
 - Confirm or filter by retention index of the U-U with AI predicted RI (NIST AIRI)

Formula ID on a Quadrupole

- Calibrated <u>profile mode data</u> provides good mass accuracy (~+/- 10mDa) which when combined with spectral accuracy provides effective mass accuracy of a few ppm.
- Simple to obtain
 - Run data in profile mode
 - Turn on cal gas (PFTBA) briefly at end of run
 - Software automatically calibrates data

Hybrid Search

- Hybrid search matches fragments and neutral losses
- Extends the scope of the library by including "nearest neighbor" compounds
- Requires the presence of similar compounds in library
- You "must" know the nominal MW, and preferably the molecular formula
- Mass Difference MUST be confined to a single region of molecule with no significant alteration of fragmentation behavior
- DeltaMass represents to difference (modification) between library and the unknown molecule

Hybrid Search Display

Calibrate for Retention Index

What is AIRI?

- NIST used there extensive database measured RI data as a training set for predicting RI of any compound by structure
- "AIRI" source code and models are published by NIST. But, it is tedious to get set up.
- Cerno is creating web-based app to predict RI from structures to make AIRI easily available to all

(1) AIRI: Predicting Retention Indices and Their Uncertainties Using Artificial Intelligence, Geer, Stein, Mallard, and Slotta, Journal of Chemical Information and Modeling 2024 64 (3), 690-696.

Unknown Peak at 13.88 is Strong and Pure

Despite that, the Search Results are Very Poor

Hit	FwdS	RevS	SA-M	RI-Fit	RI	RI-Lib	MW	CAS	Formula	Name
1:	763	839	74.23	0	3329.8	2106	282.292	629-66-3	C19H38O	2-Nonadecanone
2:	739	756	66.4	0	3329.8	3531	478.511	75207-55-5	C33H66O	2-Tritriacontanone
3:	727	792	96.47	0	3329.8	1804	240.245	18787-63-8	C16H32O	2-Hexadecanone
4:	721	786	87.29	0	3329.8	1904	254.261	2922-51-2	C17H34O	2-Heptadecanone
5:	719	803	74.23	0	3329.8	2106	282.292	629-66-3	C19H38O	2-Nonadecanone
6:	717	786	97.59	0	3329.8	1698	226.23	2345-28-0	C15H30O	2-Pentadecanone
7:	712	733	15.84	0	3329.8	3725	506.543	77327-17-4	C35H70O	2-Pentatriacontanone
8:	707	793	96.79	0	3329.8	1597	212.214	2345-27-9	C14H28O	2-Tetradecanone
9:	706	767	96.47	0	3329.8	1804	240.245	18787-63-8	C16H32O	2-Hexadecanone
10:	701	817	96.47	0	3329.8	1804	240.245	18787-63-8	C16H32O	2-Hexadecanone
11:	698	769	92.28	0	3329.8	2715	366.386	75207-54-4	C25H50O	2-Pentacosanone
12:	695	751	74.23	0	3329.8	2106	282.292	629-66-3	C19H38O	2-Nonadecanone
13:	693	752	87.29	0	3329.8	1904	254.261	2922-51-2	C17H34O	2-Heptadecanone
14:	692	741	97.44	0	3329.8	3126	422.449	17600-99-6	C29H58O	2-Nonacosanone
15:	679	737	87.29	0	3329.8	1904	254.261	2922-51-2	C17H34O	2-Heptadecanone
16:	675	735	97.59	0	3329.8	1698	226.23	2345-28-0	C15H30O	2-Pentadecanone
17:	674	723	92.28	0	3329.8	2715	366.386	75207-54-4	C25H50O	2-Pentacosanone
18:	673	802	97.59	0	3329.8	1698	226.23	2345-28-0	C15H30O	2-Pentadecanone
19:	673	729	63.1	0	3329.8	2004	268.277	7373-13-9	C18H36O	Methyl n-hexadecyl ketone
20:	672	742	94.56	0	3329.8	1496	198.198	593-08-8	C13H26O	2-Tridecanone

We can Determine the MW formula Using our Calibrated Single Quad Data

Formula Search Results

Row	Formula	Mono Isoto	Mass Error (mDa)	Mass Error (PPM)	Spectral Accuracy
	C31H62O	450.4795	2.082	4.6216	98.0607
	2 C30H62N2	450.4908	-9.1514	-20.3147	97.8866
;	C30H60ON	450.4669	14.658	32.5386	97.6968
	4 C29H60N3	450.4782	3.4246	7.6022	97.4928
	C28H58N4	450.4656	16.0007	35.5191	97.0491

Al Predicted Retention Index

57 compounds C31H62O from PubChem Search

Filter all compounds to +/- 30 iu returns 4

Hybrid Search

#	Lib.	Match	R.Match	RI	PSS.Match	DeltaMass	Name	MF	MW
1	М	914	964	3531	930	-28	2-Tritriacontanone	C33H66O	478
2	М	914	956	3126	935	28	2-Nonacosanone	C29H58O	422
3	М	914	942	3725	941	-56	2-Pentatriacontanone	C35H70O	506
4	М	903	925	2715	937	84	2-Pentacosanone		
5	М	899	930	2513	917	112	2-Tricosanone		
6	М	869	900	1698	896	224	2-Pentadecanone		
7	R	868	879	2106	892	168	2-Nonadecanone		
8	R	866	875	1904	889	196	2-Heptadecanone		
9	R	856	900	1804	880	210	2-Hexadecanone		
10	М	838	865	2004	864	182	Methyl n-hexadecyl ketone		
11	М	827	878	2306	897	140	2-Heneicosanone		

Compound	Formula	Exact Mass	Measured M/Z	PPM	SA%
2-Hentriacontanone	C31H62O	450.4795	450.4816	4.7	98.06

Compound	Measured	AIRI	Delta RI	
2-Hentriacontanone	3338	3320		18

Summary

- Combining Formula ID, RI, Hybrid search is a simple, rapid approach to analyzing U-U in a single GC/MS run on a benchtop single quad
- For cases where hybrid search is not suitable, we can still filter the potential U-U compound candidates using RI+Formula ID
- Fragment analysis can also be used to validate ID (e.g. NIST MS Interpreter)
- Compound synthesis is still the gold standard

