Feasibility and Reliability of Low and High-Resolution MS Approaches for Accurate Mass and Molecular Formula Determination in Drug

Discoverv.

Vladimír Čápka¹, Ming Gu²

¹AstraZeneca R&D Boston, Infection Discovery, 35 Gatehouse Dr., Waltham, MA 02451

²Cerno Bioscience, 14 Commerce Dr., Danburv, CT 06810

Overview

- Accurate mass provides information regarding compound identity in confirmation of reaction products, drug candidates, and metabolite identification.
- Traditionally, high mass accuracy was required for meaningful molecular formula determination.
- Isotopic MS pattern of an analyte bears valuable information about its elemental composition and can be used for molecular formula determination.
- The current work shows evaluation of isotopic pattern information for molecular formula ID by low and high resolution instruments.

Introduction

- Each unique molecular formula has a unique mass
- Each molecular formula has a unique isotopic pattern.
- Even with <5ppm mass accuracy, molecular formula determination using TOF data can vield ambiguous data in the absence of chemical knowledge of analytes.
- Isotopic pattern interpretation greatly increases confidence in molecular formula determination for accurate mass data (TOF, <5ppm mass accuracy), and enables molecular formula determination for low resolution data (quadruple-based instruments).
- Isotopic pattern interpretation and spectral accuracy calculation was done using Mass Works software and compared with MassLvnx (TOF only).
- Molecular formula ranks determined from a single guadrupole and a TOF instrument were compared for 15 model compounds.
- The aim of this work was to simplify the molecular formula determination using a more cost effective low-resolution instrument.

Mass Works software (Figure 1)

Quadrupole Instrument

- Mass Works generates a peak shape calibration function using a known standard that is applied to the raw MS data for the unknown analyte. Mass accuracy is also calibrated.
- The calibrated spectrum is compared with the theoretical one for a molecular formula candidate. Spectral accuracy is calculated. Formula rank is based on spectral accuracy.

TOF Instrument

Because mass accuracy is assumed, no standards are required.

Mass Works processed mass spectra. Spectral Accuracy (%) = 100*(1-RMSE) TOP: SA = 98.9 %, rank 1 Bottom: SA = 94.6 %, rank 32

Saturation effects can be seen in TOF spectrum resulting in low spectral accuracy. Thus, lower formula rank.

Red - raw data Green - calibrated measured data Blue - theoretical match

Results

Proof of Concept (Quadrupole Instrument)

- Nine standards were used for spectral accuracy calibration.
- Second set of the same standards were used as "unknowns"
- Results (Table I)

Mass accuracy: < 8mDa, 5-17 ppm (within range only). Excellent molecular formula rank even 200 Da out of calibrated range

Table II Molecular formula ID of model unknowns compounds

Table I Molecular formula ID of standards via self-calibration

Mase Error

reen - calibration standards covering the mass range of unknowns Yellow - standards used for testing extrapolation of formula ID beyond the calibrated range.

	Formula	Accurate Mass [M+H]+	Mass Works ZQ	Mass Works TOF	MassLynx TOF	mass accuracy MassLynx, ppm	Mass Works TOF	MassLynx TOF	MassLynx i-FIT	mass accuracy MassLynx, ppm	
Compound 1	C18H18N4O3S	371.1178	2	2	n/f	25.3	1	5	1	1.3	
Compound 2	C19H19FN4O6	419.1367	3	10	n/f	20.5	1	15	1	4.8	
Compound 3	C19H19FN4O4S	419.1189	2	6	n/f	19.6	1	16	1	3.3	
Compound 4	C21H19Cl2N9O3S	548.0787	5	10	n/f	14.4	1	21	1	4.9	
Compound 5	C23H19F3N6O5S	549.1168	9	43	n/f	15.5	4	10	4	0.5	
Compound 6	C25H21CIN8O3S	549.1224	4	15	n/f	19.3	1	9	1	1.8	
Compound 7	C24H29CIN6O5S	549.1687	4	5	n/f	14.4	1	6	1	0.9	
Compound 8	C24H22CIN9O3S	552.1333	3	5	n/f	16.8	1	13	1	1.3	
Compound 9	C23H29CIN6O6S	553.1636	1	20	n/f	18.6	1	10	1	2.0	
Compound 10	C23H27Cl2N7O5S	584.1250	6	16	n/f	13.9	1	20	1	2.2	
Compound 11	C24H23Cl2N11OS	584.1263	1	6	n/f	14.2	2	8	3	0.7	
Compound 12	C26H26F3N6O7PS	655.1352	1	70	n/f	13.1	7	12	9	-1.1	
Compound 13	C29H32F3N6O7PS	697.1821	15	215	n/f	14.8	32	29	31	2.9	
Compound 14	C33H35F3N8O4S	697.2532	2	59	n/f	16.6	12	19	17	1.7	
Compound 15	C26H28BF2N7O4S2	615.1820	1	30	n/f	4.2	5	45	8	4.2	
Red – isobaric compounds				No lock	No lock mass, n/f - not feasible			With lock mass			

Blue - unique isotopic pattern

(monoisotopic mass with low abundance)

Methods

	Single Quadrupole, ZQ	TOF, LCT Premier		
Instrument	Waters ZQ + HP1100	Waters LCT premier + Waters Acquity UPLC		
Column	Varian Polaris C18A, 3μm, 50 mm x 2.0 mm			
Flow Rate	1 mL/min	0.5 mL/min		
Injection Volume	2 μL	1-4 μL (to achieve 100-300 cps signal)		
Mobile Phase	A: 0.1% formic acid in H _n O B: 0.1% formic acid in ACN			
Gradient	5 to 95% B in 4.5 min (unknowns) 5 to 50% B in 4.5 min (standards)	5 to 95% B in 4.5 min		
MS detection, ESI+	100 – 800 amu in 1 s, inter-scan delay 0.03 s	200 – 800 amu in 0.5 s, inter scan delay 0.05 s		
Resolution	Unit, ~0.6 amu peak width half hight	~6000 PWHM		
Mass accuracy (based on MassLLynx)	N/A, nominal mass, ± 0.2 amu	<5 ppm, lock spray (5 μL/min) 4-25 ppm no lock spray		
Lock Mass	N/A	buspirone ([M+H] 386.2556), 1 ng/mL leucine enkephalin ([M+H] 556.2771), 10 ng/mL Reserpine ([M+H] 609.2812), 5 ng/mL		
Spectra accuracy calibration	Required	Not required		

Single Quadrupole

- Due to low mass accuracy, spectral accuracy calibration is required. 9 commercially available calibration standards used.
- No spectral accuracy standards required.

Mass Works Data Processing Criteria

C: 1-50	F: 1-5
H: 1-100	CI: 1-2*
N: 1-25	B: 1-2*
O: 1-25	P: 1-2
S: 1-11	

- Only elements present in each molecule were used in the molecular formula search.
- Easily recognizable pattern, more restrictive criteria used.

Conclusions

- Isotopic pattern interpretation using MassWorks software enables molecular formula ID using a low resolution guadrupole-based instrumentation. < 20mDa mass accuracy was achieved.
 - -Quadrupole instruments cost effective, wide dynamic range, suitable for inexperienced user. Due to dynamic range, able to interpret unique isotopic patterns (see compound 15).
- Molecular formula ID using TOF instrument requires high mass accuracy. Mass accuracy alone is insufficient for unambiguous molecular formula ID.
- Isobaric compounds were unambiguously differentiated by guadrupole and TOF instruments. i.e. formula list did not contain the other isobaric compounds or they were present with a poor rank.
- Quadrupole data calibrated by Mass Works software is superior to TOF data without internal calibration and to the accurate mass data (<5ppm) without isotopic pattern interpretation.
- Ultimate molecular formula ID requires high mass accuracy and the isotopic interpretation.
- TOF molecular formula ID is problematic for compounds with monoisotopic elements that lack isotopic signature (F, P, I) resulting in lower rank.

Acknowledgments

AstraZeneca Infection and Cancer Chemistry Cerno Bioscience