IDENTIFICATION OF "UNKNOWNS" – STRUCTURAL CLUES FROM ADVANCED ISOTOPE PEAK MODELING OF MS AND ORTHOGONAL MS/MS DATA

Robert J Strife1; Michele Mangels1; Jason Price1; Ming Gu2; Yongdong Wang2; Don Kuehl2 ¹Procter & Gamble, Cincinnati, OH; ²Cerno Bioscience, Danbury, CT

OVERVIEW

- → Evaluate novel approach for determination of elemental composition using CLIPS™ functionality in MassWorks™ software package.
- → Analyze "blind" six nominal m/z 399 compounds with variable C. H. N. O. and S compositions using mass calibrant
- → Utilize representative MS instrument configurations (e.g., infusion ESI-TOF, UPLC-ESI-TOF, infusion
- → Perform proper statistical analysis of processed data - 99% prediction interval (PI) using 6 replicate determinations.
- → Compare identification results.

TEST COMPOUNDS COMMERCIALLY AVAILABLE M/Z 399 COMPOUNDS (C, H, N, O, S ONLY) 125 PPM

RESULTS

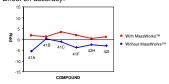
- Compound formulas verified by hybrid LTQ-ICR-FTMS measurements (99% PI = 50 ppb, single composition answers)
- → TOF results Directional improvement in correct m/z determination (accuracy and precision) and formula selection.
- → Quad results 30x improvement in accuracy and 15x improvement in PI width (decreases # of candidates).
- Quad results Correct formula (sulfur compounds) always in top 3 hits of candidate list sorted by spectral accuracy / always in top 10 for non-sulfur
- * LTQ-ICR-FTMS data courtesy Vladimir Zabrouskov, Thermo Fisher Scientific

PROPER STATISTICAL TREATMENT

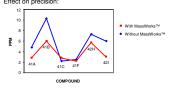
- All data has random error accuracy quotes alone are insufficient! Precision must also be evaluated for m/z and isotope ratios when evaluating potential candidate formulas.
- → S_x provides sample estimate of the standard deviation, σ_x
- 99% confidence limit expresses coverage of distribution area based on limited number of "n" measurements.

t_{a.e} multiplier used because σ_x is not known

 $\underline{n-1} \quad \underline{t_{\alpha,\phi}}$ 3 5.84 4 60 5 4.03 3.71



★ Prediction interval expresses future statistical


$$PI = x \pm s_x (t_{\alpha,\phi})[1 + 1/n]^{1/2}$$

TOF DATA IMPROVEMENT

- → 99% PI determined from 6 separate runs
- → Precision reduced to ± 9 ppm
- → M+1 / M ratio approaches ± 4%
- → Effect on accuracy:

→ Effect on precision:

QUAD DATA IMPROVEMENT

- → Improved procedure 0.1 Da = 250 ppm
- → Accuracy ~30x improved
- → PI ~15x narrower
- → Over 400 formula "hits" found (200 hits for C₁₅₊)
- → Results by compound:

Accuracy (ppm) 41A 25 41B 15 41C 8.5 41F 17 42H 7 42I 32	99% PI (ppm) 48 32 44 40 15 60
--	---

SPECTRAL ACCURACY -A BETTER METRIC FOR FIT RANKINGS

→ Top six candidate formulas for 42I (C₂₁H₂₇N₄S₂) based on 99% Plusing TOF data:

WITHOUT MASSWORKS™	WITH MASSWORKS™	SPECTRAL ACCURACY
C ₁₉ H ₂₈ N ₄ S ₂ Na	C21 H27 N4 S2	99.73
C ₂₀ H ₃₁ O ₄ S ₂	C ₂₀ H ₃₁ O ₄ S ₂	99.63
C ₁₉ H ₃₂ N ₂ OPS ₂	C ₁₉ H ₂₈ N ₄ S ₂ Na	99.61
C21 H27 N4 S2	C ₁₉ H ₃₂ N ₂ OPS ₂	99.55
C ₂₃ H ₂₇ O ₄ S	C18 H30 O4 S2 Na	99.42
C ₁₈ H ₃₂ O ₄ S ₂ Na	C ₂₃ H ₂₇ O ₄ S	99.27

SPECTRAL ACCURACY -A BETTER METRIC FOR COMPOUND ID

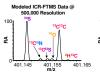
- → Elemental composition list for 42H (C₂₅H₂₃N₂OS)
- Rank ordered by spectral accuracy correct formula is #1 using Quad data.

MS/MS DATA FOR ORTHOGONAL COMPOSITION FILTERING

- → Preserve isotope information in fragmentation data by passing entire isotope envelope to collision cell of QQQ system.
- Possible compositions identified for 42H (C₂₅H₂₃N₂OS) based on spectral accuracy and 99% PI include:

Con	nposition Candidates	Spectral Accuracy
1.	C25H23SON2	99.73
2.	C24H23SN4	99.71
3.	C ₂₅ H ₂₈ SNaO	99.61
4.	C ₂₀ H ₂₄ SNaON ₂	99.21

- → Fragment at m/z 381 (loss of water) eliminates candidate #2 - non-oxygen-containing formula.
- → Absence of m/z 376 (loss of sodium) eliminates sodium-containing formulas #3 and #4.
- Sulfur isotope pattern observed in fragment at m/z 205, but not in fragment of m/z 167.



FUTURE WORK

Can partially resolved isotope lines be successfully used for elemental composition determination?

M+2 PEAKS FOR COMPOUND 42H (C₃₆H₃₂N₂OS)

** Orbitrap-FTMS data courtesy Dr Wai Len and Prof. Shuk-mei Ho.